Le théorème matriciel de Kreiss

Soit $n \in \mathbf{N}^*$. Pour $(x_1, \dots, x_n) \in \mathbf{C}^n$, le vecteur colonne $X = (x_1, \dots, x_n)^T$ appartient à $\mathcal{M}_{n,1}(\mathbf{C})$; on pose

$$||X|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}.$$

On admet que l'application $X \in \mathcal{M}_{n,1}(\mathbf{C}) \longmapsto ||X||$ est une norme sur $\mathcal{M}_{n,1}(\mathbf{C})$. On note

$$\Sigma_n = \{ X \in \mathcal{M}_{n,1}(\mathbf{C}) ; ||X|| = 1 \}.$$

On identifie $\mathcal{M}_{1,1}(\mathbf{C})$ à \mathbf{C} . Ainsi, si $(X,Y) \in \mathcal{M}_{n,1}(\mathbf{C})^2$ et $M \in \mathcal{M}_n(\mathbf{C})$, X^TMY est un nombre complexe.

Si $M \in \mathcal{M}_n(\mathbf{C})$, on note χ_M le polynôme caractéristique de M, $\sigma(M)$ l'ensemble des valeurs propres de M. Si $1 \leq i, j \leq n$, on note $(M)_{i,j}$ le coefficient de M situé à la i-ième ligne et à la j-ième colonne. Pour $z \in \mathbf{C} \setminus \sigma(M)$, on note

$$R_z(M) = (zI_n - M)^{-1}.$$

Soient

$$\mathbb{U} = \{ z \in \mathbf{C} ; |z| = 1 \} \quad \text{et} \quad \mathbb{D} = \{ z \in \mathbf{C} ; |z| \le 1 \}.$$

Les parties 4 et 5 sont indépendantes des parties 1, 2 et 3. Dans la partie 3, les questions 7 à 10 sont indépendantes des questions 5 et 6.

1 Norme d'opérateur sur $\mathcal{M}_n(\mathbf{C})$

1 ▷ Justifier que si $M \in \mathcal{M}_n(\mathbf{C})$, l'application

$$X \in \Sigma_n \longmapsto ||MX||$$

atteint son maximum, que l'on notera $||M||_{op}$.

Établir les deux propriétés

$$\forall M \in \mathcal{M}_n(\mathbf{C}), \qquad \|M\|_{\text{op}} = \max \left\{ \frac{\|MX\|}{\|X\|} ; X \in \mathcal{M}_{n,1}(\mathbf{C}) \setminus \{0\} \right\},$$

$$\forall (M, M') \in \mathcal{M}_n(\mathbf{C})^2, \qquad \|M'M\|_{\text{op}} \le \|M'\|_{\text{op}} \|M\|_{\text{op}}.$$

On admettra dans la suite que l'application $M \in \mathcal{M}_n(\mathbf{C}) \longmapsto ||M||_{\text{op}}$ est une norme sur $\mathcal{M}_n(\mathbf{C})$.

 $2 \triangleright \text{Si } U \in \mathcal{M}_{n,1}(\mathbf{C}), \text{ montrer que}$

$$\max\{|V^T U| \; ; \; V \in \Sigma_n\} = ||U||.$$

En déduire que, si M est dans $\mathcal{M}_n(\mathbf{C})$, alors

$$\max\{|X^T M Y| ; (X, Y) \in \Sigma_n \times \Sigma_n\} = ||M||_{\text{op.}}$$

2 L'ensemble \mathcal{B}_n

Soit \mathcal{B}_n l'ensemble des matrices M de $\mathcal{M}_n(\mathbf{C})$ telles que la suite $(\|M^k\|_{\text{op}})_{k\in\mathbf{N}}$ soit bornée. Pour $M \in \mathcal{B}_n$, on pose

$$b(M) = \sup\{\|M^k\|_{\text{op}} \; ; \; k \in \mathbf{N}\}.$$

- 3 ▷ Soient $M \in \mathcal{B}_n$, $X \in \mathcal{M}_{n,1}(\mathbf{C})$. Montrer que la suite $(\|M^k X\|)_{k \in \mathbf{N}}$ est bornée. Si $\lambda \in \sigma(M)$, si X est un vecteur propre de M associé à λ , exprimer pour $k \in \mathbf{N}$, le vecteur $M^k X$ en fonction de λ , k et X. En déduire que $\sigma(M) \subset \mathbb{D}$.
- **4** ▷ On suppose que $n \ge 2$. Indiquer, avec justification, une matrice M de $\mathcal{M}_n(\mathbf{C})$, triangulaire supérieure, telle que $\sigma(M) \subset \mathbb{D}$, mais n'appartenant pas à \mathcal{B}_n .

3 Résolvante d'un élément de $\mathcal{M}_n(\mathbf{C})$

On dit que l'élément M de $\mathcal{M}_n(\mathbf{C})$ vérifie \mathcal{P} si, pour tout (i, j) de $\{1, \ldots, n\}^2$, il existe un élément $P_{M,i,j}$ de $\mathbf{C}_{n-1}[X]$ tel que

$$\forall z \in \mathbf{C} \setminus \sigma(M), \qquad (R_z(M))_{i,j} = \frac{P_{M,i,j}(z)}{\chi_M(z)}.$$
 (\mathcal{P})

 $\mathbf{5} \triangleright \text{Montrer}$ que les matrices diagonalisables de $\mathcal{M}_n(\mathbf{C})$ vérifient \mathcal{P} . On commencera par le cas des matrices diagonales.

6 ▷ On admet que toute matrice de $\mathcal{M}_n(\mathbf{C})$ vérifie \mathcal{P} . En déduire que, si $M \in \mathcal{M}_n(\mathbf{C})$ et $(X,Y) \in \mathcal{M}_{n,1}(\mathbf{C})^2$, il existe un élément $P_{M,X,Y}$ de $\mathbf{C}_{n-1}[X]$ tel que

$$\forall z \in \mathbf{C} \setminus \sigma(M), \qquad X^T R_z(M) Y = \frac{P_{M,X,Y}(z)}{\chi_M(z)}.$$

7 ▷ Soient $M \in \mathcal{B}_n$ et $z \in \mathbb{C} \setminus \mathbb{D}$. Montrer que la série de matrices $\sum \frac{M^j}{z^{j+1}}$ converge.

On admettra le fait suivant : soit (E, N) un espace vectoriel normé de dimension finie ; si $(v_j)_{j\in\mathbb{N}}$ est une suite d'éléments de E telle que la série $\sum N(v_j)$ converge, alors la série $\sum v_j$ converge dans E.

Si $m \in \mathbb{N}$, donner une expression simplifiée de $(zI_n - M)$ $\sum_{j=0}^m \frac{M^j}{z^{j+1}}$.

En déduire que

$$R_z(M) = \sum_{j=0}^{+\infty} \frac{M^j}{z^{j+1}}.$$

Pour $M \in \mathcal{B}_n$, on définit la fonction

$$\varphi_M : z \in \mathbf{C} \setminus \mathbb{D} \longmapsto (|z| - 1) \|R_z(M)\|_{\text{op}}.$$

8 ⊳ Déduire de la question précédente l'inégalité

(1)
$$\forall M \in \mathcal{B}_n, \quad \forall z \in \mathbf{C} \setminus \mathbb{D}, \qquad \varphi_M(z) \leq b(M).$$

Soit $(c_j)_{j\in\mathbb{N}}$ une suite de nombres complexes telle que la série $\sum c_j$ converge absolument. On pose

$$\forall t \in \mathbf{R}, \qquad u(t) = \sum_{j=0}^{+\infty} c_j \ e^{-i(j+1)t}.$$

 $\mathbf{9} \triangleright \text{Justifier l'existence et la continuité de la fonction } u.$

Pour $k \in \mathbb{N}$, montrer que

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} u(t) e^{i(k+1)t} dt = c_k.$$

10 ▷ Soient $M \in \mathcal{B}_n$, $r \in]1, +\infty[$ et $(X,Y) \in \mathcal{M}_{n,1}(\mathbf{C})^2$. Déterminer une suite de nombres complexes $(c_j)_{j \in \mathbf{N}}$ telle que la série $\sum c_j$ converge absolument et que

$$\forall t \in \mathbf{R}, \qquad X^T R_{re^{it}}(M) Y = \sum_{j=0}^{+\infty} c_j e^{-i(j+1)t}.$$

Si $k \in \mathbb{N}$, en déduire, en utilisant la question 9, une expression intégrale de X^TM^kY .

4 Variation totale et norme uniforme

Soit \mathcal{C}^1 l'espace des fonctions de classe C^1 de $[-\pi, \pi]$ dans \mathbf{C} . Pour $f \in \mathcal{C}^1$, on pose

$$||f||_{\infty} = \max\{|f(t)| \; ; \; t \in [-\pi, \pi]\} \quad \text{et} \quad V(f) = \int_{-\pi}^{\pi} |f'|.$$

11 ▷ En considérant une suite de fonctions bien choisie, montrer qu'il n'existe pas d'élément C de \mathbf{R}^{+*} tel que

$$\forall f \in \mathcal{C}^1, \qquad V(f) \le C \|f\|_{\infty}.$$

Soit $f \in \mathcal{C}^1$ à valeurs réelles. On suppose que l'ensemble C(f) des points de $]-\pi,\pi[$ en lesquels la fonction f' s'annule est fini. On note ℓ le cardinal de C(f) et, si $\ell \geq 1$, on désigne par $t_1 < \cdots < t_\ell$ les éléments de C(f). On pose $t_0 = -\pi$ et $t_{\ell+1} = \pi$.

12 ▷ Montrer que

$$V(f) = \sum_{j=0}^{\ell} |f(t_{j+1}) - f(t_j)|.$$

Pour $0 \le j \le \ell$, soit ψ_j la fonction de **R** dans $\{0,1\}$ égale à 1 sur $[f(t_j), f(t_{j+1})]$ et à 0 sur $\mathbf{R} \setminus [f(t_j), f(t_{j+1})]$. Montrer que

$$V(f) = \sum_{j=0}^{\ell} \int_{-\|f\|_{\infty}}^{\|f\|_{\infty}} \psi_j.$$

13 \triangleright Si $y \in \mathbf{R}$, montrer que l'ensemble $f^{-1}(\{y\}) \cap [-\pi, \pi[$ est fini de cardinal majoré par $\ell + 1$; on note N(y) ce cardinal.

Si $y \in \mathbf{R}$, exprimer N(y) en fonction de $\psi_0(y), \dots, \psi_\ell(y)$. En déduire l'inégalité

(2)
$$V(f) \le 2 \max\{N(y) ; y \in \mathbf{R}\} \|f\|_{\infty}.$$

5 L'inégalité de Spijker

On appelle fraction rationnelle tout quotient $F = \frac{P}{Q}$ où $P \in \mathbf{C}[X]$ et $Q \in \mathbf{C}[X] \setminus \{0\}$. Une telle fraction peut s'écrire sous la forme précédente de façon que P et Q n'aient pas de racine commune dans \mathbf{C} ; si tel est le cas, les racines de Q dans \mathbf{C} sont, par définition, les pôles de F. On note \mathcal{R}_n l'ensemble des fractions rationnelles sans pôle dans \mathbb{U} de la forme $\frac{P}{Q}$ où P et Q sont deux éléments de $\mathbf{C}_n[X]$. Soient, dans la suite de cette partie, $F \in \mathcal{R}_n$, P et Q deux éléments de $\mathbf{C}_n[X]$ vérifiant $F = \frac{P}{Q}$ et

$$\forall z \in \mathbb{U}, \qquad Q(z) \neq 0.$$

Pour $t \in [-\pi, \pi]$, on pose

$$f(t) = F(e^{it}) = g(t) + ih(t)$$
 où $(g(t), h(t)) \in \mathbf{R}^2$.

Pour $u \in [-\pi, \pi]$, on définit une fonction f_u de $[-\pi, \pi]$ dans **R** par

$$\forall t \in [-\pi, \pi], \qquad f_u(t) = g(t)\cos(u) + h(t)\sin(u) = \operatorname{Re}(e^{-iu}F(e^{it})) = \operatorname{Re}(e^{-iu}f(t)).$$

14 \triangleright Dans cette question, on fixe $u \in [-\pi, \pi]$ et on suppose que f_u n'est pas constante. On fixe également $y \in \mathbf{R}$. En utilisant éventuellement l'expression de $f_u(t)$ comme partie réelle de $e^{-iu}F(e^{it})$ et la formule d'Euler pour la partie réelle, déterminer $S \in \mathbf{C}_{2n}[X]$ tel que

$$\forall t \in [-\pi, \pi], \qquad f_u(t) = y \iff S(e^{it}) = 0.$$

En déduire que l'ensemble $f_u^{-1}(\{y\}) \cap [-\pi, \pi[$ est fini de cardinal majoré par 2n.

15 ▷ En observant que la fonction $|\cos|$ est 2π -périodique, calculer, pour $\omega \in \mathbf{R}$, l'intégrale

$$\int_{-\pi}^{\pi} |\cos(u - \omega)| \, du.$$

En déduire que, si $(a, b) \in \mathbf{R}^2$,

$$\int_{-\pi}^{\pi} |a\cos(u) + b\sin(u)| \, du = 4\sqrt{a^2 + b^2}.$$

16 ⊳ Exprimer l'intégrale

$$\int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} |f_u'(t)| \, \mathrm{d}u \right) \, \mathrm{d}t$$

en fonction de V(f).

17 ⊳ On admet l'égalité

$$\int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} |f_u'(t)| \, du \right) \, dt = \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} |f_u'(t)| \, dt \right) \, du.$$

On admet aussi que, pour $u \in [-\pi, \pi]$ tel que f_u ne soit pas constante, l'ensemble des points de $]-\pi,\pi[$ en lesquels la fonction f_u' s'annule est fini (ce que l'on pourrait établir en raisonnant comme dans la question $14 \triangleright$).

(3)
$$V(f) \le 2\pi \ n \|f\|_{\infty}$$
.

6 La version de Spijker du théorème matriciel de Kreiss

Soit $M \in \mathcal{B}_n$. L'inégalité (1) de la question 8 justifie la définition de

$$b'(M) = \sup \{ \varphi_M(z) ; z \in \mathbf{C} \setminus \mathbb{D} \}.$$

et entraı̂ne que $b'(M) \leq b(M)$. On se propose de majorer b(M) en fonction de b'(M). Dans les questions $18 \triangleright$ et $19 \triangleright$, on fixe $r \in]1, +\infty[$ et $(X,Y) \in \Sigma_n^2$. Pour $\rho \in \mathbf{R}^{+*}$, on note

$$\mathbb{D}_{\rho} = \{ z \in \mathbf{C} \; ; \; |z| \le \rho \}.$$

18 ▷ Montrer qu'il existe un élément F_r de \mathcal{R}_n dont les pôles sont tous dans $\mathbb{D}_{1/r}$ et tel que les deux propriétés suivantes soient satisfaites :

$$\forall z \in \mathbf{C} \setminus \mathbb{D}_{1/r}, \qquad |F_r(z)| \le \frac{b'(M)}{r|z|-1}$$

$$\forall k \in \mathbf{N}, \qquad X^T M^k Y = \frac{r^{k+1}}{2\pi} \int_{-\pi}^{\pi} F_r(e^{it}) e^{i(k+1)t} \, \mathrm{d}t.$$

19 \triangleright En utilisant la question précédente, une intégration par parties et l'inégalité (3) de la question 17 \triangleright , montrer que

$$\forall k \in \mathbf{N}, \qquad |X^T M^k Y| \le \frac{r^{k+1}}{(k+1) (r-1)} \ n \ b'(M).$$

20 ▷ Démontrer finalement l'inégalité

(4)
$$b(M) \le en \ b'(M)$$
.

Ce résultat de M.N. Spijker (1991) améliore un théorème de H.O. Kreiss (1962). La constante *en* est asymptotiquement optimale.

Fin du problème