Étude asymptotique du nombre de partitions d'un entier

L'objectif de ce problème est l'étude asymptotique du nombre de partitions d'un entier naturel n, c'est-à-dire du nombre de décompositions de n en somme d'entiers naturels non nuls (sans tenir compte de l'ordre des termes). Une définition rigoureuse de ce nombre, noté p_n , est donnée en début de partie \mathbf{C} . Dans la partie \mathbf{A} , on introduit une fonction P de variable complexe; dans la fin de la partie \mathbf{C} on démontre qu'il s'agit de la somme, sur le disque unité ouvert complexe, de la série entière $\sum_{n>0} p_n z^n$. Dans la partie

B, on étudie P au voisinage de 1 en variable réelle. Cette étude est mise à profit, dans la partie **D**, pour obtenir une domination de bonne qualité de la suite (p_n) .

Tout au long du problème, le disque unité ouvert de C sera noté

$$D = \{ z \in \mathbf{C} : |z| < 1 \}.$$

On admettra aussi l'identité classique suivante :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

A. Fonctions L et P

1 ⊳ Soit $z \in D$. Montrer la convergence de la série $\sum_{n\geq 1} \frac{z^n}{n}$. Préciser la valeur de sa somme lorsque $z \in]-1,1[$. On notera

$$L(z) := \sum_{n=1}^{+\infty} \frac{z^n}{n}.$$

- 2 ⊳ Soit $z \in D$. Montrer que la fonction $Φ : t \mapsto L(tz)$ est dérivable sur un intervalle ouvert incluant [-1,1] et donner une expression simple de sa dérivée sur [-1,1].
- $\mathbf{3}$ ⊳ Soit $z \in D$. Montrer que la fonction $\Psi : t \mapsto (1 tz) e^{L(tz)}$ est constante sur [0, 1], et en déduire que

$$\exp(L(z)) = \frac{1}{1-z}.$$

4 ▷ Montrer que $|L(z)| \le -\ln(1-|z|)$ pour tout z dans D.

En déduire que la série $\sum_{n\geq 1} L(z^n)$ est convergente pour tout z dans D.

Dans la suite, pour tout $z \in D$ on note

$$P(z) := \exp\left[\sum_{n=1}^{+\infty} L(z^n)\right].$$

5 \triangleright Soit $z \in D$. Vérifier que $P(z) \neq 0$, que

$$P(z) = \lim_{N \to +\infty} \prod_{n=1}^{N} \frac{1}{1 - z^n}$$

et que pour tout réel t > 0,

$$\ln P(e^{-t}) = -\sum_{n=1}^{+\infty} \ln(1 - e^{-nt}).$$

B. Développement asymptotique en variable réelle

Dans cette partie, on introduit la fonction q qui à tout réel x associe le nombre réel $q(x) = x - \lfloor x \rfloor - \frac{1}{2}$, où $\lfloor x \rfloor$ désigne la partie entière de x.

- $\mathbf{6}$ ▷ Montrer que q est continue par morceaux sur \mathbf{R} , qu'elle est 1-périodique et que la fonction |q| est paire.
- $7 \triangleright \text{Montrer que } \int_1^{+\infty} \frac{q(u)}{e^{tu} 1} \, \mathrm{d}u \text{ est bien définie pour tout réel } t > 0.$
- $8 \triangleright \text{Montrer que pour tout entier } n > 1,$

$$\int_{1}^{n} \frac{q(u)}{u} du = \ln(n!) + (n-1) - n \ln(n) - \frac{1}{2} \ln(n) = \ln\left(\frac{n! e^{n}}{n^{n} \sqrt{n}}\right) - 1.$$

 $\mathbf{9} \triangleright \text{Montrer que } \int_{\lfloor x \rfloor}^x \frac{q(u)}{u} \, \mathrm{d}u$ tend vers 0 quand x tend vers $+\infty$, et en déduire la convergence de l'intégrale $\int_1^{+\infty} \frac{q(u)}{u} \, \mathrm{d}u$, ainsi que l'égalité

$$\int_{1}^{+\infty} \frac{q(u)}{u} du = \frac{\ln(2\pi)}{2} - 1.$$

 $\mathbf{10}$ \triangleright À l'aide d'un développement en série sous l'intégrale, montrer que

$$\int_0^{+\infty} \ln(1 - e^{-u}) \, \mathrm{d}u = -\frac{\pi^2}{6}.$$

11 ▷ Montrer que

$$\int_0^1 \ln \left(\frac{1 - e^{-tu}}{t} \right) \, \mathrm{d}u \underset{t \to 0^+}{\longrightarrow} -1.$$

On pourra commencer par établir que $x\mapsto \frac{1-e^{-x}}{x}$ est décroissante sur \mathbf{R}_+^* .

Pour $k \in \mathbf{N}^*$ et $t \in \mathbf{R}_+$, on pose

$$u_k(t) = \int_{k/2}^{(k+1)/2} \frac{tq(u)}{e^{tu} - 1} du$$
 si $t > 0$, et $u_k(t) = \int_{k/2}^{(k+1)/2} \frac{q(u)}{u} du$ si $t = 0$.

12 ▷ Montrer que u_k est continue sur \mathbf{R}_+ pour tout $k \in \mathbf{N}^*$.

13 ▷ Soit $t \in \mathbf{R}_+^*$. Montrer successivement que $|u_k(t)| = \int_{k/2}^{(k+1)/2} \frac{t |q(u)|}{e^{tu} - 1} du$ puis $u_k(t) = (-1)^k |u_k(t)|$ pour tout entier $k \ge 1$, et établir enfin que

$$\forall n \in \mathbf{N}^*, \ \left| \sum_{k=n}^{+\infty} u_k(t) \right| \le \frac{1}{2n}.$$

On admettra dans la suite que cette majoration vaut encore pour t = 0.

14 ⊳ En déduire que

$$\int_{1}^{+\infty} \frac{t \, q(u)}{e^{tu} - 1} \, \mathrm{d}u \xrightarrow[t \to 0^{+}]{} \frac{\ln(2\pi)}{2} - 1.$$

15 ▷ Montrer, pour tout réel t > 0, l'identité

$$\int_{1}^{+\infty} \frac{t \, q(u)}{e^{tu} - 1} \, \mathrm{d}u = -\frac{1}{2} \, \ln(1 - e^{-t}) - \ln P(e^{-t}) - \int_{1}^{+\infty} \ln(1 - e^{-tu}) \, \mathrm{d}u.$$

16 ▷ Conclure que

$$\ln P(e^{-t}) = \frac{\pi^2}{6t} + \frac{\ln(t)}{2} - \frac{\ln(2\pi)}{2} + o(1) \quad \text{quand } t \text{ tend vers } 0^+.$$

C. Développement de P en série entière

Pour $(n, N) \in \mathbf{N} \times \mathbf{N}^*$, on note $P_{n,N}$ l'ensemble des listes $(a_1, \dots, a_N) \in \mathbf{N}^N$ telles que $\sum_{k=1}^{N} k a_k = n$. Si cet ensemble est fini, on note $p_{n,N}$ son cardinal.

17 ▷ Soit $n \in \mathbf{N}$. Montrer que $P_{n,N}$ est inclus dans $[0,n]^N$ et non vide pour tout $N \in \mathbf{N}^*$, que la suite $(p_{n,N})_{N\geq 1}$ est croissante et qu'elle est constante à partir du rang $\max(n,1)$.

Dans toute la suite, on notera p_n la valeur finale de $(p_{n,N})_{N\geq 1}$.

18 ▷ Soit $N \in \mathbf{N}^*$. Donner une suite $(a_{n,N})_{n \in \mathbf{N}}$ telle que

$$\forall z \in D, \ \frac{1}{1 - z^N} = \sum_{n=0}^{+\infty} a_{n,N} z^n.$$

En déduire, par récurrence, la formule

$$\forall N \in \mathbf{N}^*, \ \forall z \in D, \ \prod_{k=1}^{N} \frac{1}{1-z^k} = \sum_{n=0}^{+\infty} p_{n,N} z^n.$$

- 19 ⊳ On fixe $\ell \in \mathbb{N}$ et $x \in [0,1[$. En utilisant le résultat de la question précédente, établir la majoration $\sum_{n=0}^{\ell} p_n x^n \leq P(x)$. En déduire le rayon de convergence de la série entière $\sum_{n} p_n z^n$.
- **20** \triangleright Soit $z \in D$. En examinant la différence $\sum_{n=0}^{+\infty} p_n z^n \sum_{n=0}^{+\infty} p_{n,N} z^n$, démontrer que

$$P(z) = \sum_{n=0}^{+\infty} p_n z^n.$$

21 ▷ Soit $n \in \mathbb{N}$. Montrer que pour tout réel t > 0,

$$p_n = \frac{e^{nt} P(e^{-t})}{2\pi} \int_{-\pi}^{\pi} e^{-in\theta} \frac{P(e^{-t} e^{i\theta})}{P(e^{-t})} d\theta.$$
 (1)

Dans le reste du problème, l'objectif est d'utiliser la formule (1) pour obtenir un contrôle assez fin du nombre p_n lorsque n tend vers $+\infty$.

D. Contrôle de P

22 \triangleright Soit $x \in [0,1[$ et $\theta \in \mathbf{R}$. En utilisant la fonction L, montrer que

$$\left| \frac{1 - x}{1 - xe^{i\theta}} \right| \le \exp\left(-(1 - \cos \theta) x \right).$$

En déduire que pour tout $x \in [0, 1]$ et tout réel θ ,

$$\left| \frac{P(xe^{i\theta})}{P(x)} \right| \le \exp\left(-\frac{1}{1-x} + \operatorname{Re}\left(\frac{1}{1-xe^{i\theta}}\right)\right).$$

23 ▷ Soit $x \in [0,1[$ et θ un réel. Montrer que

$$\frac{1}{1-x} - \text{Re}\left(\frac{1}{1-xe^{i\theta}}\right) \ge \frac{x(1-\cos\theta)}{(1-x)((1-x)^2 + 2x(1-\cos\theta))}.$$

En déduire que si $x \ge \frac{1}{2}$ alors

$$\left|\frac{P(xe^{i\theta})}{P(x)}\right| \le \exp\left(-\frac{1-\cos\theta}{6(1-x)^3}\right) \quad \text{ou} \quad \left|\frac{P(xe^{i\theta})}{P(x)}\right| \le \exp\left(-\frac{1}{3(1-x)}\right).$$

Pour ce dernier résultat, on distinguera deux cas selon les valeurs relatives de $x(1-\cos\theta)$ et $(1-x)^2$.

24 \triangleright Montrer qu'il existe un réel $\alpha > 0$ tel que

$$\forall \theta \in [-\pi, \pi], \ 1 - \cos \theta \ge \alpha \theta^2.$$

En déduire qu'il existe trois réels $t_0 > 0$, $\beta > 0$ et $\gamma > 0$ tels que, pour tout $t \in]0, t_0]$ et tout $\theta \in [-\pi, \pi]$,

$$\left| \frac{P(e^{-t}e^{i\theta})}{P(e^{-t})} \right| \le e^{-\beta(t^{-3/2}\theta)^2} \quad \text{ou} \quad \left| \frac{P(e^{-t}e^{i\theta})}{P(e^{-t})} \right| \le e^{-\gamma(t^{-3/2}|\theta|)^{2/3}}.$$

25 ⊳ En déduire que

$$\int_{-\pi}^{\pi} e^{-i\frac{\pi^2 \theta}{6t^2}} \frac{P(e^{-t}e^{i\theta})}{P(e^{-t})} d\theta = O(t^{3/2}) \quad \text{quand } t \text{ tend vers } 0^+.$$

E. Conclusion

26 ▷ En prenant $t = \frac{\pi}{\sqrt{6n}}$ dans (1), conclure que

$$p_n = O\left(\frac{\exp\left(\pi\sqrt{\frac{2n}{3}}\right)}{n}\right)$$
 quand n tend vers $+\infty$.

Épilogue. Le dernier résultat est très proche de l'optimalité. Par une analyse plus fine de l'intégrale dans la formule (1), on peut en effet établir l'équivalent

$$p_n \sim \frac{\exp\left(\pi\sqrt{\frac{2n}{3}}\right)}{4\sqrt{3}n}$$
 quand $n \to +\infty$,

formule découverte par Hardy et Ramanujan en 1918.

FIN DU PROBLÈME