A 2007 PHYS. I MP

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE, ÉCOLE POLYTECHNIQUE (FILIÈRE TSI)

CONCOURS D'ADMISSION 2007

PREMIERE ÉPREUVE DE PHYSIQUE

Filière MP

(Durée de l'épreuve : 3 heures) L'usage de la calculatrice est autorisé

Sujet mis à disposition des concours : ENSAE (Statistique), ENSTIM, INT, TPE-EIVP, Cycle international Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

PHYSIQUE I -MP.

L'énoncé de cette épreuve comporte 7 pages.

- Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il est invité à le signaler sur sa copie et à poursuivre sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.
- Tout résultat fourni dans l'énoncé peut être utilisé pour les questions ultérieures, même s'il n'a pas été démontré.
- Il ne faudra pas hésiter à formuler les commentaires (incluant des considérations numériques) qui vous sembleront pertinents, même lorsque l'énoncé ne le demande pas explicitement. Le barème tiendra compte de ces initiatives ainsi que des qualités de rédaction de la copie.

Notations: vecteur $\rightarrow \vec{\mathbf{A}}$ (gras); norme du vecteur $\vec{\mathbf{V}} \rightarrow V$ (italique); vecteur unitaire $\rightarrow \hat{\mathbf{a}}$.

Dans toute l'épreuve, *exprimer* signifie « donner l'expression littérale » et *calculer* signifie « donner la valeur numérique ».

SATELLITES DE TÉLÉCOMMUNICATION

On se propose d'étudier quelques aspects du fonctionnement de satellites de télécommunication en orbite autour de la Terre. Sauf mention contraire, on considérera que la Terre est une sphère homogène de rayon R_T et de centre O, immobile dans l'espace, sans rotation propre.

À la fin de cet énoncé (page 7), sont regroupées des valeurs de grandeurs physiques et un formulaire utilisables dans cette épreuve.

I SATELLITES SUR ORBITE CIRCULAIRE

 \Box 1 – Un satellite de masse M_S est en orbite circulaire de centre O, à une altitude h de l'ordre de quelques centaines de kilomètres (orbite basse). Établir la relation entre la période

de révolution T et h. Exprimer de même la relation entre la vitesse $v = \|\vec{\mathbf{v}}\|$ et h.

 \square 2 – Soient E_c et E_p l'énergie cinétique du satellite et son énergie potentielle dans le champ de gravitation de la Terre ; établir le « théorème du viriel » : $2E_c + E_p = 0$.

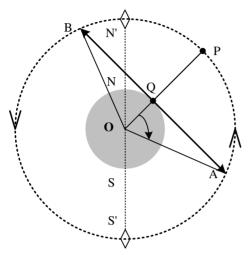


Fig. 1 : Satellite P, point Q et ligne des horizons AB. Le plan orbital représenté est dit polaire (la ligne des pôles est N'SNS'). L'angle est dit ancillaire.

□ 3 – À chaque position P du satellite correspond un point Q sur la Terre à la verticale de ce point. L'ensemble des points Q définit la trace de la trajectoire. Pour un observateur situé en Q, la durée de visibilité τ d'un satellite est l'intervalle de temps entre son apparition sur l'horizon (point A de la Fig. 1) et sa disparition sous l'horizon (point B). Exprimer τ en fonction de h, G, M_T et R_T .

Calculer τ pour $h = 8 \times 10^5$ m.

 \Box 4 – Calculer T/τ . Pour les besoins de la téléphonie mobile, on place sur des orbites polaires (c'est-à-dire contenues dans un plan méridien terrestre) un ensemble de satellites,

identiques, appelé « train de satellites ». Ces satellites sont disposés régulièrement sur leur orbite polaire commune, à l'altitude de 800 km. Calculer le nombre minimal de satellites nécessaires pour former un « train » afin que tous les points au sol, dans le même plan méridien que l'orbite, voient au moins un satellite à tout instant.

Combien d'orbites polaires de ce type faut-il pour couvrir la surface de la Terre, c'est à dire pour que chaque point de la surface terrestre voie au moins un satellite à tout instant ? Combien doit-on disposer de satellites en tout ?

- □ 5 Dans cette question, on prend en compte la rotation de la Terre. Calculer la période et l'altitude d'un satellite placé sur orbite géostationnaire. La notion de durée de visibilité garde-t-elle, dans ce cas, un sens ? Quels sont les avantages et les inconvénients d'un satellite géostationnaire comparé au train de la question 4 ?
- \Box 6 La Terre est entourée d'une atmosphère qui s'oppose au mouvement du satellite. La force de frottement $\vec{\mathbf{f}}_a$ créée par l'atmosphère est proportionnelle au carré de la vitesse v du satellite et elle s'exprime par $\vec{\mathbf{f}}_a = -\alpha M_S \ v \ \vec{\mathbf{v}}$, où α a une valeur positive, constante dans cette question. Déterminer la dimension de α . Écrire le théorème de l'énergie cinétique en supposant que le théorème du viriel établi à la question 2 reste applicable en présence de $\vec{\mathbf{f}}_a$. Établir l'équation différentielle vérifiée par h.
- \Box 7 Un satellite placé sur une orbite d'altitude 800 km subit une diminution d'altitude d'environ 1 m par révolution; sa vitesse est, en norme, très peu affectée au bout d'une révolution. En déduire une estimation au premier ordre de α (ne pas s'étonner de la petitesse

extrême du résultat!). Calculer, avec la même approximation, ce qu'il advient de l'altitude au bout de 10 ans de fonctionnement du satellite. Comparer à la solution exacte. Le fait d'avoir une augmentation de la vitesse en présence d'une force opposée au mouvement est-il paradoxal?

□ 8 – En réalité, les frottements dépendent de la densité de l'atmosphère et donc de l'altitude. Dans un certain domaine d'altitudes, α varie selon la loi $\alpha(h) = \frac{\gamma}{h^{\beta}}$, où γ et β sont positifs. Le même satellite que celui de la question 7 (perdant 1 mètre par révolution pour $h \approx 800 \text{ km}$) perd, à l'altitude de 400 km, 2 mètres par révolution. Calculer γ et β .

II STABILISATION DE L'ATTITUDE D'UN SATELLITE SUR SON ORBITE PAR GRADIENT DE GRAVITÉ

La méthode de stabilisation d'attitude par gradient de gravité a été mise en œuvre pour les

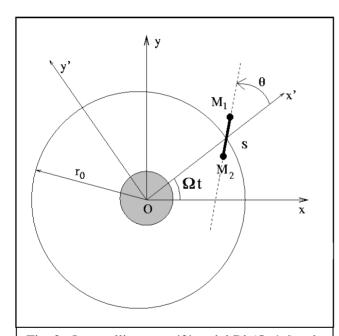


Fig. 2 : Le satellite, son référentiel R' (Ox'y') et le référentiel R lié à la Terre (Oxy).

satellites artificiels afin qu'ils présentent vers la Terre toujours le même côté. Elle ne requiert aucune ressource d'énergie embarquée. Le principe de cette méthode a été établi par Lagrange, au XVIIème, afin d'expliquer pourquoi la Lune présente toujours la même face vers la Terre.

Modèle: le satellite est constitué de deux points matériels M_1 et M_2 de masses identiques $m = \frac{1}{2}M_S$ reliés par une tige

rigide de masse nulle et de longueur 2l. Le barycentre S du satellite décrit autour de la Terre une orbite circulaire de rayon $r_0 = R_T + h$ ($l << r_0$). Le référentiel géocentrique (R) lié au repère (Oxyz) est supposé galiléen. Le plan orbital est Oxy. Le référentiel (R') défini par le repère (Ox'y'z) lié au satellite tourne autour de la Terre avec une vitesse angulaire Ω (Fig. 2). Les points M_1 et M_2 sont dans le plan orbital : $\overrightarrow{OS} = r_0 \hat{\mathbf{u}}$, $\overrightarrow{OM}_1 = r_1 \hat{\mathbf{u}}_1$ et

 $\overrightarrow{OM}_2 = r_2 \hat{\mathbf{u}}_2$, où $\hat{\mathbf{u}}$, $\hat{\mathbf{u}}_1$ et $\hat{\mathbf{u}}_2$ sont unitaires. On appelle θ l'angle de M_1M_2 avec l'axe Ox' de (R'). On cherche à déterminer les éventuelles positions d'équilibre du satellite dans le référentiel (R') et leur stabilité. On suppose qu'il n'y a pas de frottements.

Étude dynamique, dans le référentiel mobile

 $\hfill \mbox{\bf Q}$ – Exprimer les forces gravitationnelles \vec{F}_1 et \vec{F}_2 qui agissent sur M_1 et $M_2.$

□ 10 – Exprimer dans (R') les forces d'inertie d'entraînement qui agissent sur M_1 et M_2 , en fonction de m, Ω , $\vec{\mathbf{r}}_1$ et $\vec{\mathbf{r}}_2$. Exprimer dans (R') les forces d'inertie de Coriolis qui agissent

sur M₁ et M₂, en fonction de m, Ω , \overrightarrow{SM}_1 , \overrightarrow{SM}_2 et $\overset{\bullet}{\theta} = \frac{d\theta}{dt}$.

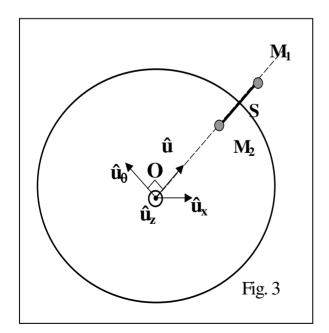
□ 11 – Montrer que dans (R') le moment des forces d'inertie de Coriolis en S est nul. Établir que dans (R') le moment résultant calculé en S des actions extérieures a pour amplitude, pour $l << r_0$, $\Gamma_S = 6 Gm M_T \frac{l^2}{r_0^3} \sin(\theta) \cos(\theta)$. Préciser la direction et le sens de ce moment cinétique.

- □ 12 Appliquer le théorème du moment cinétique dans (R'). Établir l'équation différentielle du mouvement. Déterminer les valeurs de θ qui correspondent à une position d'équilibre dans (R').
- \Box 13 Montrer que θ = 0 est une position d'équilibre stable. Existe-t-il une position d'équilibre instable? Quelle est la forme de l'équation différentielle pour les petits mouvements autour de cette position d'équilibre instable?
- □ 14 À partir de la position $\theta = 0$, le satellite subit une petite perturbation qui l'écarte d'un angle θ_o . Calculer la période des oscillations au voisinage de la position d'équilibre, pour un satellite d'altitude h = 800 km. Comparer cette période avec la période du satellite autour de la Terre.

Étude énergétique, dans le référentiel géocentrique galiléen

- □ 15 Exprimer le potentiel de gravitation, en fonction des données du problème et en procédant aux approximations qui s'imposent ($l << r_0$).
- □ 16 Considérer l'énergie mécanique du satellite et en déduire la période des petites oscillations autour de la position d'équilibre stable.

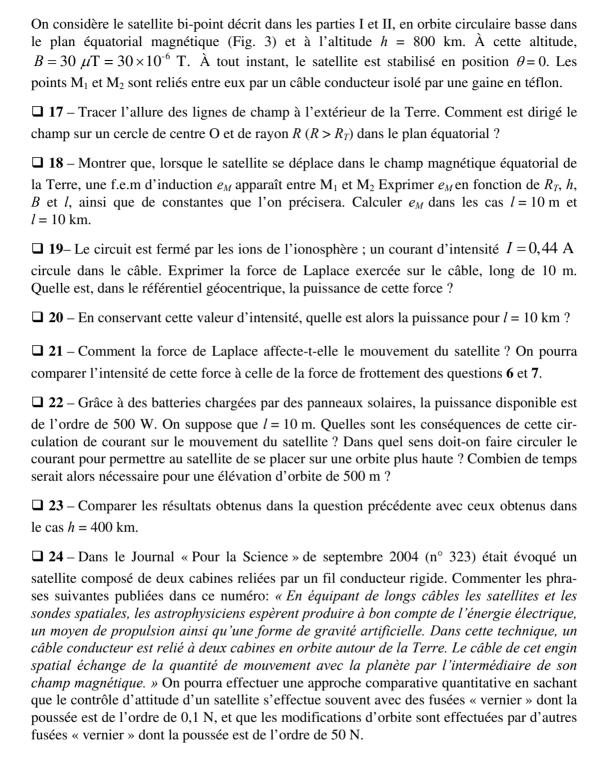
III EFFET DYNAMO



La Terre est entourée d'un champ magnétique \vec{B} . On admet que les lignes de champ à l'extérieur de la Terre sont équivalentes à celles que produit un moment magnétique Nord-Sud $\vec{\mu}$ placé au centre O de la Terre, le pôle magnétique Nord étant voisin du pôle Nord géographique. Dans le système de coordonnées sphériques dont l'axe Oz est colinéaire au moment,

$$B_r = \frac{\mu_0}{4\pi} \frac{2\mu\cos(\theta)}{r^3} \text{ et}$$

$$B_{\theta} = \frac{\mu_0}{4\pi} \frac{\mu \sin(\theta)}{r^3}.$$



IV COMMUNICATIONS SPATIALES

Le satellite communique avec la Terre en émettant ou recevant des ondes électromagnétiques. Ces ondes traversent l'atmosphère, assimilée ici au vide, à l'exception d'une couche appelée ionosphère située environ à partir de l'altitude $z_i = 100$ km de la Terre. L'ionosphère est constituée d'un gaz sous très faible pression et partiellement ionisé par le rayonnement

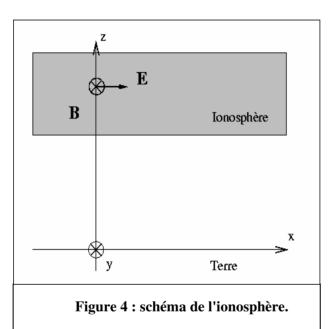
solaire, encore appelé plasma ionosphérique. Ce plasma contient donc des ions positifs de charge +e et de masse M_i et des électrons de charge -e et de masse m_e . L'ionosphère étant électriquement neutre, ions positifs et électrons ont même densité particulaire n.

On étudie la possibilité de propagation selon une verticale locale (Fig. 4) d'une onde électromagnétique monochromatique plane progressive décrite par les champs \vec{E} et \vec{B} :

$$\vec{\mathbf{E}} = E_0 e^{i(\omega t - kz)} \hat{\mathbf{u}}_x$$

$$\vec{\mathbf{B}} = B_0 e^{i(\omega t - kz)} \hat{\mathbf{u}}_{y}$$

avec ω réel et constant. On admettra qu'étant donné les conditions expérimentales, $\frac{\omega}{k} \approx c$.



□ 25 – Exprimer la force de Lorentz exercée sur les charges. Dans quelle condition peut-on négliger la contribution du champ magnétique devant celle du champ électrique ?

Dans cette hypothèse, exprimer en notation complexe la vitesse $\overrightarrow{\mathbf{v_e}}$ prise par un électron ; exprimer de même la vitesse $\overrightarrow{\mathbf{v_i}}$ prise par un ion. On admet que l'amplitude des mouvements de l'électron est très petite devant la longueur d'onde du rayonnement. En déduire la densité de courant $\overrightarrow{\mathbf{j}}$ qui apparaît dans le plasma. Simplifier cette expression en tenant compte de la relation $M_i >> m_e$.

□ 26 – Écrire les équations de Max-

well dans le plasma. En déduire l'équation aux dérivées partielles vérifiée par le champ $\vec{\mathbf{E}}$, puis l'expression de k^2 en fonction de ω et des données. On introduira $c=\frac{1}{\sqrt{\mathcal{E}_0\,\mu_0}}$. On

posera
$$\omega_p^2 = \frac{ne^2}{m\,\varepsilon_0}$$
.

- \square 27 Discuter suivant la valeur de ω la possibilité de propagation de l'onde à travers le plasma. On montrera que l'ionosphère se comporte comme un filtre passe-haut dont on donnera la fréquence de coupure f_c .
- \Box 28 Dans le cas où la propagation est possible, donner la relation de dispersion, la vitesse de phase v_{φ} , la vitesse de groupe v_g . Le milieu est-il dispersif ? Tracer les graphes de v_{φ} et v_g en fonction de ω et donner une relation simple entre v_{φ} et v_g .

- □ 29 La densité particulaire est $n = 2.10^{10}$ m⁻³. Comparer cette densité avec celle du cuivre, que l'on évaluera en admettant par exemple que chaque atome du cristal de cuivre métal fournit un électron libre. Donner le domaine de fréquences qui permet de communiquer avec le satellite.
- □ 30 On considère un canal de communication entre un satellite placé à une altitude de 800 km et un observateur terrestre tel que le satellite soit exactement à sa verticale. La fréquence de ce canal est 1 GHz. Quel sera le retard induit par l'ionosphère en supposant que celle-ci est homogène entre 100 km et 300 km d'altitude (on considérera dans ce problème que l'atmosphère comprise entre 0 km et 100 km d'altitude a un indice égal à 1, et qu'au dessus de 300 km, la propagation s'effectue dans le vide)? Comment se modifie ce retard lorsque la densité particulaire passe de la valeur de $n_0 = 2.10^{10}$ m⁻³ (valeur typique de nuit) à $n_1 = 5 \cdot 10^{11}$ m⁻³ (valeur typique de jour), et en supposant que l'extension de l'ionosphère ne varie pas entre le jour et la nuit ?

FIN DU PROBLÈME

DONNÉES PHYSIQUES

constante de gravitation $G = 6,67 \cdot 10^{-11} \text{ m}^3.\text{kg}^{-1}.\text{s}^{-2}$

rayon de la Terre $R_T = 6400 \text{ km}$

masse de la Terre $M_T = 6.0 \cdot 10^{24} \text{ kg}$

masse du satellite $M_S = 2.0 \ 10^3 \text{ kg}$

perméabilité du vide $\mu_0 = 4\pi . 10^{-7} \, \text{H.m}^{-1}$

vitesse de la lumière $c = 3.10^8 \,\mathrm{m.s^{-1}}$

masse de l'électron $m_e = 0.91.10^{-30} \text{ kg}$

charge élémentaire $e = 1,6.10^{-19} \text{ C}$

FORMULAIRE

$$\overrightarrow{\mathbf{rot}}(\overrightarrow{\mathbf{rot}}) = \overrightarrow{\mathbf{grad}}(\operatorname{div}) - \overrightarrow{\Delta}$$

FIN DE L'ÉPREUVE