CONCOURS D'ADMISSION 2009

DEUXIÈME COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Endomorphismes d'espaces vectoriels de dimension infinie

Première partie

Pour tout nombre réel λ , on désigne par T_{λ} l'endomorphisme de l'espace vectoriel \mathbf{C}^2 représenté par la matrice $\begin{pmatrix} 0 & 1 \\ -1 & \lambda \end{pmatrix}$ dans la base naturelle de \mathbf{C}^2 notée (e_1, e_2) .

- 1. Construire une base $(f_{\lambda,1}, f_{\lambda,2})$ de \mathbb{C}^2 telle que chacun des $f_{\lambda,i}$ ait une composante sur e_1 égale à 1 et, en outre, ayant les propriétés suivantes :
 - **1.a)** Si $|\lambda| > 2$, il existe un réel μ_{λ} de module > 1 tel que

$$T_{\lambda} f_{\lambda,1} = \mu_{\lambda} f_{\lambda,1}$$
 , $T_{\lambda} f_{\lambda,2} = \mu_{\lambda}^{-1} f_{\lambda,2}$.

- **1.b)** Si $|\lambda| < 2$, on a une formule analogue, mais où μ_{λ} est un nombre complexe de module 1 et de partie imaginaire > 0, que l'on précisera.
 - **1.c)** Si $\lambda = 2$, on a

$$T_2 f_{2,1} = f_{2,1}$$
 , $T_2 f_{2,2} = f_{2,1} + f_{2,2}$.

1.d) Si $\lambda = -2$, on a

$$T_{-2}f_{-2,1} = -f_{-2,1}$$
 , $T_{-2}f_{-2,2} = f_{-2,1} - f_{-2,2}$.

Deuxième partie

On désigne par E l'espace vectoriel des suites de nombres complexes $x = (x_k)_{k \in \mathbb{Z}}$ et par A l'endomorphisme de E défini par

$$\forall x \in E, \forall k \in \mathbf{Z}$$
 , $(Ax)_k = x_{k-1} + x_{k+1}$.

On s'intéresse au noyau de l'endomorphisme $A - \lambda \operatorname{id}_E$ où λ est un nombre **réel**.

2.a) Vérifier qu'un élément x de E appartient à Ker $(A - \lambda id_E)$ si et seulement si l'on a

$$\forall k \in \mathbf{Z}, \qquad \begin{pmatrix} x_k \\ x_{k+1} \end{pmatrix} = T_{\lambda}^k \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}.$$

- **2.b)** Préciser la dimension de Ker $(A \lambda id_E)$.
- **3.** On suppose $x \in \text{Ker } (A \lambda \operatorname{id}_E)$ et on note $\alpha_{\lambda,1}$ et $\alpha_{\lambda,2}$ les composantes, dans la base $(f_{\lambda,1}, f_{\lambda,2})$ de \mathbf{C}^2 , du vecteur $\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$. Démontrer les assertions suivantes :

3.a) Si
$$|\lambda| \neq 2$$
, on a

$$x_k = \mu_{\lambda}^k \alpha_{\lambda,1} + \mu_{\lambda}^{-k} \alpha_{\lambda,2} .$$

3.b) Si $\lambda = 2$, on a

$$x_k = \alpha_{2,1} + (k+1)\alpha_{2,2}$$
.

3.c) Si
$$\lambda = -2$$
, on a

$$x_k = (-1)^k (\alpha_{-2,1} + (1-k)\alpha_{-2,2})$$
.

4. On fixe un entier $N \ge 2$ et on désigne par P_N l'ensemble des x de E tels que l'on ait $x_{k+N} = x_k$ pour tout $k \in \mathbf{Z}$.

Dire pour quelles valeurs de λ le sous-espace $\operatorname{Ker}(A - \lambda \operatorname{id}_E) \cap P_N$ n'est pas réduit à $\{0\}$ et, dans ce cas, en donner une base.

Troisième partie

On définit deux sous-espaces vectoriels de E de la façon suivante :

• E_1 est l'ensemble des éléments x de E tels que $\sum_{k\in\mathbf{Z}}|x_k|<+\infty$ et on le munit de la norme

$$||x||_1 = \sum_{k \in \mathbf{Z}} |x_k| .$$

• E_{∞} est l'ensemble des éléments u de E tels que $\sup_{k \in \mathbf{Z}} |u_k| < +\infty$ et on le munit de la norme

$$||u||_{\infty} = \sup_{k \in \mathbf{Z}} |u_k|.$$

5. Étant donnés $x \in E_1$ et $u \in E_{\infty}$, on pose

$$\langle x, u \rangle = \sum_{k \in \mathbf{Z}} x_k u_k .$$

Vérifier que, pour tout $u \in E_{\infty}$ (resp. tout $x \in E_1$), l'application $x \mapsto \langle x, u \rangle$ (resp. $u \mapsto \langle x, u \rangle$) est une forme linéaire continue sur E_1 (resp. sur E_{∞}) dont on précisera la norme.

- **6.** Montrer que l'on a $A(E_1) \subset E_1$, $A(E_\infty) \subset E_\infty$. Montrer que les endomorphismes A_1 et A_∞ induits par A respectivement sur E_1 et E_∞ sont continus et de norme 2.
 - 7. Démontrer les assertions suivantes :
 - **7.a)** Pour tout entier $n \ge 0$, tout $k \in \mathbf{Z}$ et tout $x \in E$ on a

$$(A^n x)_k = \sum_{n=0}^n \binom{n}{p} x_{k-n+2p}$$

et

$$\sum_{k \in \mathbf{Z}} |(A^n x)_k| \leqslant 2^n \sum_{k \in \mathbf{Z}} |x_k|.$$

7.b) Si $|\lambda| > 2$, pour tout $x \in E_1$, la formule

$$B_{\lambda}x = \sum_{n \ge 0} \lambda^{-n} A_1^n x$$

a un sens et définit un endomorphisme bijectif B_{λ} de E_1 dont on précisera l'inverse.

- 8. Soit λ un nombre réel.
- **8.a)** Déterminer $Ker(A_1 \lambda id_{E_1})$.
- **8.b)** Déterminer $\operatorname{Ker}(A_{\infty} \lambda \operatorname{id}_{E_{\infty}})$.
- 9. Dire pour quelles valeurs de λ le sous-espace image de $A_1 \lambda \operatorname{id}_{E_1}$ est une partie dense de E_1 .

[On pourra évaluer $\langle x, u \rangle$ pour $x \in \text{Im}(A_1 - \lambda \operatorname{id}_{E_1})$ et $u \in \text{Ker}(A_{\infty} - \lambda \operatorname{id}_{E_{\infty}})$.]

Quatrième partie

Pour tout élément x de E_1 on définit comme suit une fonction φ_x d'une variable réelle, continue, de période 2π :

$$\varphi_x(t) = \sum_{k \in \mathbf{Z}} x_k e^{ikt}$$
.

- **10.** Calculer $\int_0^{2\pi} \varphi_x(t)e^{-int} dt$, pour $n \in \mathbf{Z}$.
- **11.** Calculer $\varphi_{A_1x}(t)$.
- **12.** Calculer $\varphi_{B_{\lambda}x}(t)$ pour $|\lambda| > 2$.
- 13. Donner une nouvelle démonstration de la question 8.a).

* *

*

3