CX 2111 J. 1852

MATHÉMATIQUES

Durée: 4 heures

Pour les épreuves d'admissibilité, l'usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d'accompagnement, est autorisé, une seule à la fois étant admise sur la table ou le poste de travail, et aucun n'échange n'est autorisé entre les candidats.

Pour tout entier $m \in \mathbb{N}$, on note $C^m(\mathbb{R}; \mathbb{C})$ l'espace vectoriel des fonctions de classe C^m sur \mathbb{R} à valeurs complexes. Soit T un réel strictement positif. On définit l'espace vectoriel E_0 par

$$E_0 = \{ f : \mathbb{R} \to \mathbb{C}, T \text{-p\'eriodique et continue par morceaux} \},$$

et pour $k \in \mathbb{N}$,

$$F_k = \{ f \in C^k(\mathbb{R}; \mathbb{C}), T \text{-périodique} \}.$$

On munit l'espace vectoriel E_0 du produit scalaire hermitien $(\cdot | \cdot)$ et des normes $||\cdot||_1$, $||\cdot||_2$ et $||\cdot||_{\infty}$ définies comme suit :

$$(f | g) = \frac{1}{T} \int_0^T \overline{f(t)} g(t) dt, \quad \text{pour} \quad (f, g) \in E_0 \times E_0,$$

$$||f||_1 = \frac{1}{T} \int_0^T |f(t)| dt, \quad ||f||_2 = \left\{ \frac{1}{T} \int_0^T |f(t)|^2 dt \right\}^{\frac{1}{2}}, \quad ||f||_{\infty} = \sup_{t \in [0,T]} |f(t)|.$$

Etant donné $g \in E_0$, on pose pour tout $f \in E_0$ et $x \in \mathbb{R}$,

$$A_g f(x) = \frac{1}{T} \int_0^T g(x - t) f(t) dt.$$

Le but de ce problème est d'étudier les propriétés de l'opérateur $A_g: f \mapsto A_g f$ défini sur E_0 en fonction de la régularité et de l'intégrabilité de g.

Tournez la page S.V.P.

Partie I

- I.1 Soit $g \in E_0$ à valeurs réelles, telle qu'en tout point x_0 , g soit continue à droite ou continue à gauche. On suppose que pour toute fonction f dans E_0 à valeurs réelles satisfaisant $f \ge 0$, on a $A_g f \ge 0$. Montrer que $g \ge 0$.
- I.2 Montrer que si $(f,g) \in E_0 \times E_0$, alors $A_g f = A_f g$.
- I.3 Soit $g_0 \in E_0$ définie sur [0,T] par $g_0(t)=1$ si $t \in [0,T/2[$, et $g_0(t)=0$ si $t \in [T/2,T[$. Soit $f \in E_0$, et \tilde{f} définie sur \mathbb{R} par

$$\tilde{f}(\sigma) = \frac{1}{T} \int_0^{\sigma} f(t) dt.$$

- I.3.1 Exprimer $A_{g_0}f$ à l'aide de la fonction \tilde{f} .
- I.3.2 Montrer que $A_{g_0}f$ appartient à F_0 .
- I.4 Montrer que si $(f,g) \in E_0 \times E_0$, alors $A_g f \in F_0$.
- I.5 Etude des propriétés de régularité de $A_g f$:
 - I.5.1 Soient $k \in \mathbb{N}$, $g \in F_k$ et $f \in F_0$. Montrer que $A_g f \in F_k$.
 - I.5.2 Soient $(k,\ell) \in \mathbb{N}^2$, $g \in F_k$ et $f \in F_\ell$. Montrer que $A_g f \in F_{k+\ell}$.
- I.6 Etant donnée $f \in E_0$, on introduit ses coefficients de Fourier

$$c_n(f) = \frac{1}{T} \int_0^T f(t) \exp\left(-\frac{2i\pi nt}{T}\right) dt, \quad n \in \mathbb{Z}.$$

Montrer que pour $(f,g) \in E_0 \times E_0$, on a

$$c_n(A_q f) = c_n(f)c_n(g),$$
 pour tout $n \in \mathbb{Z}$.

- I.7 Soit $g \in E_0$ et $\lambda \in \mathbb{C} \setminus \{0\}$ donnés.
 - I.7.1 Montrer que Card $\{n \in \mathbb{Z}, c_n(g) = \lambda\}$ est fini.
 - I.7.2 A_g étant considéré comme un endomorphisme de E_0 , montrer que $\operatorname{Ker}(A_g \lambda I_{E_0})$ est de dimension finie.
 - I.7.3 Soit V un sous-espace vectoriel de E_0 de dimension finie, stable par A_g , tel que la restriction $A_g|_V$ de A_g à V soit diagonalisable. Caractériser V.
- I.8 Existe-t-il $g \in F_0$ tel que $A_g|_{F_0}$ soit bijective de F_0 sur F_0 ?
- I.9 Soit $g \in E_0$. Montrer que

$$\sup_{f \in E_0, ||f||_2 = 1} ||A_g f||_2 = \sup_{n \in \mathbb{Z}} |c_n(g)|.$$

Partie II

Dans cette partie, on étudie les propriétés de la famille $(A_{k_{\varepsilon}})_{{\varepsilon}\in]0,T/2[}$ d'endomorphismes de E_0 , où $k_{\varepsilon}\in E_0$ est la fonction à valeurs réelles *impaire* satisfaisant

$$k_{\varepsilon}(y) = \begin{cases} 0 & \text{si} \quad y \in [0, \varepsilon[\cup \{T/2\} \\ \frac{1}{y} & \text{si} \quad y \in [\varepsilon, T/2[\end{bmatrix} \end{cases}$$

On introduit la suite $(\alpha_n)_{n\in\mathbb{N}}$ définie par

$$\alpha_n = \int_0^{\pi n} \frac{\sin u}{u} du, \qquad n \in \mathbb{N}.$$

II.1 Calculer la norme

$$||k_{\varepsilon}||_1$$

et en déterminer un équivalent lorsque ε tend vers 0.

II.2 Soit $f \in F_1$ et $p_0 \in \mathbb{N}$ tel que $p_0 > 2/T$.

Pour tout $p \in \mathbb{N}$ tel que $p \geq p_0$, on note

$$\Phi_p = A_{k_{\frac{1}{n}}} f.$$

Montrer que $(\Phi_p)_{p \geq p_0}$ converge uniformément sur [0,T] (on note Af sa limite). Montrer que A est une application linéaire de F_1 dans F_0 .

- II.3 Etant donnée $f \in F_1$, calculer les coefficients de Fourier de Af en fonction des α_n , $n \in \mathbb{N}$, et des coefficients de Fourier de f.
- II.4 Etude de la suite $(\alpha_n)_{n\in\mathbb{N}}$:
 - II.4.1 Montrer que la suite $(\alpha_{2n})_{n\in\mathbb{N}}$ est croissante, puis que $(\alpha_{2n+1})_{n\in\mathbb{N}}$ est décroissante.
 - II.4.2 Montrer l'existence de $\ell > 0$ tel que $(\alpha_n)_{n \in \mathbb{N}}$ converge vers ℓ lorsque n tend vers $+\infty$.
 - II.4.3 En déduire que

$$\sup_{n\in\mathbb{N}}\alpha_n=\alpha_1.$$

II.5 Calculer

$$\sup_{f \in F_1, ||f||_2 = 1} ||Af||_2.$$

II.6 Soit $f\in E_0$. Constuire une suite $(f_n)_{n\in\mathbb{N}}$ d'éléments de F_1 telle que $(f_n)_{n\in\mathbb{N}}$ converge vers f en moyenne quadratique dans E_0 et

$$\lim_{n \to +\infty} \sup_{p \in \mathbb{N}} ||Af_{n+p} - Af_n||_2 = 0.$$

Peut-on en déduire un résultat de convergence en moyenne quadratique pour la suite $(Af_n)_{n\in\mathbb{N}}$?