X-ENS 2016

Préambule

Dans tout le texte, $M_{n,m}(\mathbb{R})$ désigne l'ensemble des matrices à n lignes, m colonnes et à coefficients réels ; on notera I_n la matrice identité de $M_n(\mathbb{R}) = M_{n,n}(\mathbb{R})$. Si $A = [a_{i,j}]_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in M_{n,m}(\mathbb{R})$, on notera $^tA = [a_{j,i}]_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in M_{m,n}(\mathbb{R})$ la matrice transposée de A. On identifiera les vecteurs de \mathbb{R}^n avec les éléments de $M_{n,1}(\mathbb{R})$. On utilisera la notation diag $(\lambda_1, \ldots, \lambda_n)$ pour désigner la matrice diagonale de $M_{n,1}(\mathbb{R})$ dont les coefficients diagonaux sont les λ_i . Une matrice $S \in M_n(\mathbb{R})$ est dite diagonale de signes si elle est de la forme

$$S = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n)$$
 où $\forall i \in \{1, \dots, n\}, \ \varepsilon_i \in \{-1, 1\}$

L'espace vectoriel \mathbb{R}^n est muni du produit scalaire

$$(x,y) \in \mathbb{R}^n \times \mathbb{R}^n \mapsto (x|y) = {}^t xy \in \mathbb{R}$$

et on note $||x|| = \sqrt{(x|x)}$ la norme d'un vecteur x de \mathbb{R}^n . On rappelle qu'une matrice $A \in M_n(\mathbb{R})$ est dite orthogonale si ${}^tAA = I_n$ ou de manière équivalente si pour tout $x, y \in \mathbb{R}^n$, on a (Ax|Ay) = (x|y). Une matrice $A = [a_{i,j}]_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in M_{n,m}(\mathbb{R})$ est dite positive et on note $A \geq 0$ si tous ses coefficients $a_{i,j}$ sont positifs:

$$[a_{i,j}]_{\substack{1 \le i \le n \\ 1 \le i \le n}} \ge 0 \iff \forall i \in \{1, \dots, n\}, \ \forall j \in \{1, \dots, m\}, \ a_{i,j} \ge 0$$

On dira aussi qu'elle est strictement positive et on note A > 0 si tous ses coefficients le sont.

Dans le texte, on utilise les notations usuelles sur les matrices par blocs et les candidats sont invités à utiliser sans justification les calculs par blocs comme par exemple

$$\left(\begin{array}{cc} A & B \\ C & D \end{array}\right) \left(\begin{array}{c} X \\ Y \end{array}\right) = \left(\begin{array}{c} AX + BY \\ CX + DY \end{array}\right)$$

où $A \in M_m(\mathbb{R}), B \in M_{m,n}(\mathbb{R}), C \in M_{n,m}(\mathbb{R}), D \in M_n(\mathbb{R}) \text{ et } X \in \mathbb{R}^m, Y \in \mathbb{R}^m.$

L'objectif de ce problème est de démontrer le théorème de Broyden suivant et ses liens avec le lemme de Farkas et le théorème de Tucker.

Théorème de Broyden: Soit O une matrice orthogonale de $M_n(\mathbb{R})$. Il existe alors x > 0 dans \mathbb{R}^n et une unique matrice diagonale de signes S tels que

$$Ox = Sx$$

Préliminaire

- 1. Soient x, y des vecteurs *strictement positifs* de \mathbb{R}^n et soient S, R deux matrices diagonales de signes.
 - (a) Montrer que

$$(Sx|Ry) \le (x|y)$$

avec égalité si et seulement si R = S.

- (b) Démontrer l'unicité de S dans le théorème de Broyden.
- (c) Montrer que

$$||Sx + Ry|| \le ||x + y||$$

avec égalité si et seulement si R = S.

2. Soient O une matrice orthogonale de $M_n(\mathbb{R})$ et S une matrice diagonale de signes. Montrer que l'égalité Ox = Sx avec $x \in \mathbb{R}^n$ strictement positive est équivalente à

$$(*) \begin{cases} (I_n + O)x \ge 0, \\ (I_n - O)x \ge 0, \\ x > 0 \end{cases}$$

Remarque : c'est l'énoncé d'origine et il n'a aucun sens. Il faut le retravailler... pour lui en donner un.

Les parties A, B, C et D suivantes sont indépendantes entre elles.

A. Le cas n=2.

Dans cette question, on suppose n=2. On identifie les éléments $x=\begin{pmatrix} x_1\\x_2\end{pmatrix}\in\mathbb{R}^2$ aux vecteurs $\vec{x}=x_1\vec{i}+x_2\vec{j}$ du plan euclidien relativement à un repère orthonormé (Ω,\vec{i},\vec{j}) : les matrices de $M_2(\mathbb{R})$ seront ainsi identifiées aux applications linéaires de ce plan (conservant donc l'origine Ω).

3. Soit O la matrice d'une réflexion relativement à une droite passant par Ω et dirigée par un vecteur \vec{v}_+ . Déterminer un vecteur $x \in \mathbb{R}^2$ strictement positif ainsi qu'une matrice diagonale de signes $S \in M_2(\mathbb{R})$ telle que Ox = Sx.

Indication: on commencera par traiter le cas où $\vec{v}_+ \in \{\vec{i}, \vec{j}\}$.

4. Soit à présent O la matrice d'une rotation de centre Ω et d'angle $\theta \in]-\pi,\pi]$ non nul. A l'aide d'un dessin, trouver deux vecteurs x_+ et x_- tels que

$$Ox_{+} = diag(1, -1)x_{+}$$
 et $Ox_{-} = diag(-1, 1)x_{-}$

Discuter ensuite suivant le signe de θ , lequel de x_+ et x_- est strictement positif.

B. Le théorème de Tucker

Dans cette section, nous allons prouver que le théorème de Broyden est équivalent au théorème de Tucker suivant :

Théorème de Tucker : Soit $M \in M_n(\mathbb{R})$ une matrice antisymétrique (c'est à dire ${}^tM = M$). Il existe alors un vecteur $u \in \mathbb{R}^n$ tel que

$$u > 0, Mu > 0, u + Mu > 0$$

On suppose dans un premier temps que le théorème de Tucker est vrai.

5. Avec les notations du théorème de Broyden, on note $M \in M_{3n}(\mathbb{R})$ la matrice par blocs suivante

$$M = \begin{pmatrix} 0 & 0 & I_n + 0 \\ 0 & 0 & I_n - 0 \\ -(I_n + {}^tO) & -(I_n - {}^tO) & 0 \end{pmatrix}$$

En utilisant le théorème de Tucker, montrer qu'il existe des vecteurs positifs $x, z_1, z_2 \in \mathbb{R}^n$ tels que

$$\begin{cases} (I_n + O)x \ge 0\\ (I_n - O)x \ge 0\\ -(I_n + {}^tO)z_1 - (I_n - {}^tO)z_2 \ge 0\\ z_1 + (I_n + O)x > 0\\ z_2 + (I_n - O)x > 0\\ x - (I_n + {}^tO)z_1 - (I_n - {}^tO)z_2 > 0 \end{cases}$$

- 6. Montrer que $||z_1 z_2|| = ||z_1 + z_2||$ et que $-(I_n + {}^tO)z_1 (I_n {}^tO)z_2 = 0$.
- 7. En déduire alors que x > 0 et $x + Ox \ge 0$ ainsi que $x Ox \ge 0$. Conclure On suppose à présent que le théorème de Broyden est vrai.
- 8. Montrer que si $M \in M_n(\mathbb{R})$ est antisymétrique alors $I_n + M$ est une matrice inversible.
- 9. Montrer que si $M \in M_n(\mathbb{R})$ est antisymétrique, la matrice

$$0 = (I_n + M)^{-1}(I_n - M)$$

est orthogonale.

10. Déduire du théorème de Broyden qu'il existe un vecteur strictement positif x ainsi qu'une matrice diagonale de signes S tels que Ox = Sx et en déduire que u = x + Sx est le vecteur positif du théorème de Tucker.

C. Preuve du théorème de Broyden

Nous allons prouver le théorème de Broyden par récurrence sur la dimension. Le cas de la dimension 1 étant trivial, nous supposons le résultat acquis juqu'au rang n-1 et on écrit 0 sou la forme d'une matrice par blocs

$$O = \left(\begin{array}{cc} P & \alpha \\ {}^tq & \alpha \end{array}\right)$$

où $P \in M_{n-1}(\mathbb{R})$ et donc $r, q \in \mathbb{R}^{n-1}$ et $\alpha \in \mathbb{R}$.

- 11. Montrer que $|\alpha| \le 1$ avec égalité si et seulement si q = r = 0.
- 12. Traiter le cas $|\alpha| = 1$.

On suppose à présent que $|\alpha| < 1$ et on introduit les matrices

$$Q_{-} = P - \frac{r^{t}q}{\alpha - 1}, \ Q_{+} = P - \frac{r^{t}q}{\alpha + 1}$$

- 13. Montrer que ${}^tPP + q^tq = I_{n-1}$, ${}^tPr + \alpha q = 0$ et ${}^trr + \alpha^2 = 1$.
- 14. Montrer que les matrices Q_+ et Q_- sont orthogonales.
- 15. Montrer que

$${}^{t}Q_{+}Q_{-} = I_{n-1} - \frac{2}{1 - \alpha^{2}}q^{t}q$$

et en déduire que

$$Q_{-} = Q_{+} - \frac{2}{1 - \alpha^{2}} Q_{+} q^{t} q$$

En utilisant l'hypothèse de récurrence pour Q_+ (resp. pour Q_-), on note $x_+ > 0$ (resp. $x_- > 0$) un vecteur de \mathbb{R}^{n-1} et S_+ (resp. S_-) la matrice diagonale de signes, tels que

$$Q_{+}x_{+} = S_{+}x_{+}$$
, resp. $Q_{-}x_{-} = S_{-}x_{-}$

16. Montrer que

$$(S_{+}x_{+}|S_{-}x_{-}) = (x_{+}|x_{-}) - \frac{2}{1 - \alpha^{2}}(x_{+}|q)(x_{-}|q)$$

17. On pose

•
$$\eta_+ = -\frac{(x_+|q)}{\alpha+1}, \, \eta_- = -\frac{(x_-|q)}{\alpha-1}$$

•
$$z_+ = \begin{pmatrix} x_+ \\ \eta_+ \end{pmatrix}, z_- = \begin{pmatrix} x_- \\ \eta_- \end{pmatrix}$$

•
$$S^+ = \begin{pmatrix} S_+ & 0 \\ 0 & +1 \end{pmatrix}$$
, $S^- = \begin{pmatrix} S_- & 0 \\ 0 & -1 \end{pmatrix}$. NOTE: je pense qu'il y a une erreur d'énoncé ici.

Montrer en utilisant la question 1.a que dans le cas où $S_+ \neq S_-$ alors l'un des couples (z_+, S_+) ou (z_-, S_-) vérifie le théorème de Broyden.

- 18. On suppose à présent que $S_+ = S_-$ et on suppose que $(x_+|q) = 0$. On note $z = \begin{pmatrix} x_+ \\ 0 \end{pmatrix}$, $R^+ = \begin{pmatrix} S_+ & 0 \\ 0 & +1 \end{pmatrix}$, $R^- = \begin{pmatrix} S_+ & 0 \\ 0 & -1 \end{pmatrix}$.
 - (a) Montrer que $Oz = R_+z = R_-z$.
 - (b) On écrit à présent

$$O = \left(\begin{array}{cc} \alpha' & {}^t q' \\ r' & P' \end{array}\right)$$

où $P' \in M_{n-1}(\mathbb{R})$. Construire alors $z' = \begin{pmatrix} \eta' \\ x' \end{pmatrix} \in \mathbb{R}^n$ avec $x' \in \mathbb{R}^{n-1}$ strictement positif et $\eta' \geq 0$ tel qu'il existe une matrice diagonale de signes R' vérifiant Oz' = R'z'.

(c) Dans le cas où $\eta' = 0$, et en utilisant la question 1.c, montrer qu'il existe une matrice diagonale de signes S telle que O(z + z') = S(z + z') et conclure.

D. Lemme de Farkas

Le but de cette section est de prouver le lemme de Farkas suivant.

Lemme de Farkas : Soient $A \in \mathcal{M}_{n,m}(\mathbb{R})$ et $b \in \mathbb{R}^n$. Alors exactement une des deux propriétés suivantes est vérifiée :

- (I) il existe $z \in \mathbb{R}^m$ positif tel que Az = b;
- (II) il existe $z \in \mathbb{R}^n$ tel que $-^tAz \ge 0$ et (b|z) > 0.

Pour $A \in M_{n,m}(\mathbb{R})$ et $b \in \mathbb{R}^n$ comme dans le lemme de Farkas, on pose

$$B = \begin{pmatrix} 0 & 0 & A & -b \\ 0 & 0 & -A & b \\ -tA & tA & 0 & 0 \\ tb & -tb & 0 & 0 \end{pmatrix}$$

Soit, d'après le théorème de Tucker, $y = {}^t(z_1, z_2, x, t) \ge 0$ tel que

$$By \ge 0$$
 et $y + By > 0$

- 19. Montrer que si t > 0 alors pour $z = z_1 z_2$, on a $-^t Az \ge 0$ et (b|z) > 0.
- 20. Si t > 0 montrer que Ax = tb et conclure.